浙江宁波

Synaix Lab

章成铭 宁波大学 · 人工智能教育研究 #学习分析 #人机协同 #AIED

Team Leader
章成铭

章成铭

博士 | 副教授 | 硕士生导师

宁波大学教师教育学院

研究方向

教师教育 • 人工智能教育 • 教育大数据与学习分析

教育背景

01.哲学博士,人工智能教育,德国埃尔朗根-纽伦堡大学
02.教育学硕士,实证教育研究,德国埃尔朗根-纽伦堡大学

课程开设

1.本科生《人工智能基础与应用B》
2.本科生《现代教育技术》
3.本科生《高阶统计学》
4.硕士生《人工智能教育应用》
5.硕士生《现代教育技术前沿》

学术服务

期刊审稿

Computers & EducationInternational Journal of Educational Technology in Higher EducationStudies in Higher EducationTeaching and Teacher EducationEducation and Information TechnologiesBMC PsychologyInternational Journal of Technology in EducationInternational Journal of Technology and Educational InnovationInternational Journal of Changes in EducationArtificial Intelligence and ApplicationsEnvironment and Social PsychologyJournal of Biomedical Research & Environmental Sciences

组织成员

  • 欧洲学习与教学研究协会 (EARLI)
  • 欧洲技术增强学习协会(EATEL)
  • 德国教育科学学会 (DGfE)
  • 德国实证教育研究协会 (GEBF)

科研项目

Leading innovative research projects in AI and Education.

主持项目

浙江省哲学社会科学课题(2025-2028),生成式人工智能背景下大学生技术依赖的生成机制与调适路径研究,3万

主持项目

宁波大学科研启动基金(2025-2028),《基于多模态数据的师范生反思能力智能评测与自动化反馈研究》,10万元

参与项目

欧洲学习与教学研究协会(EARLI)项目(2024-2026),《基于多模态数据的教学效能自动化评估》,16万元,在研

参与项目

德国联邦教育与研究部(BMBF)项目(2021-2024),《教师教育中基于人工智能的个人透明化学习档案系统》,885万元,已结题

学术发表

Selected Publications & Papers

01

[2] Zhang, C., Hofmann, F., Plößl, L., & Gläser-Zikuda, M. (2024). Classification of reflective writing: A comparative analysis with shallow machine learning and pre-trained language models. Education and Information Technologies, 1-27. https://doi.org/10.1007/s10639-024-12720-0

02

[1] Zhang, C., Hu, M., Wu, W., Chen, Y., Kamran, F., & Wang, X. (2025). A profile analysis of pre-service teachers’ AI acceptance: Combining behavioral, technological, and human factors. Teaching and Teacher Education, 163, 105086. https://doi.org/10.1016/j.tate.2025.105086

03

[3] Zhang, C., Hu, M., Wu, W., Kamran, F., & Wang, X. (2024). Unpacking perceived risks and AI trust influences pre-service teachers' AI acceptance: A structural equation modeling-based multi-group analysis. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12905-7

04

[4] Zhang, C., Schießl, J., Plößl, L., Hofmann, F., & Gläser-Zikuda, M. (2023). Acceptance of artificial intelligence among pre-service teachers: a multigroup analysis. International Journal of Educational Technology in Higher Education, 20(1), 49. https://doi.org/10.1186/s41239-023-00420-7

05

[5] Zhang, C., Schießl, J., Plößl, L., Hofmann, F., & Gläser-Zikuda, M. (2023). Evaluating Reflective Writing in Pre-Service Teachers: The Potential of a Mixed-Methods Approach. Education Sciences, 13(12), 1213. https://doi.org/10.3390/educsci13121213

06

[6] Zhang, C., Gläser-Zikuda, M., Hofmann, F., & Kamran, F. (2024). Self-regulation of preservice teachers in digital learning environments. In Self-Regulated Learning - Insights and Innovations. Intechopen. https://doi.org/10.5772/intechopen.1006330

07

[7] 吴卫东,章成铭,傅唯佳,等.战略演进与学术聚焦:人工智能教育在德国[J].全球教育展望,2025,54(06):111-124.

08

[8] Gläser-Zikuda, M., Zhang, C., Hofmann, F., Plößl, L., Pössel, L., & Artmann, M. (2024). Mixed Methods Research on Reflective Writing in Teacher Education. Frontiers in Psychology. 15, 1394641. https://doi.org/10.3389/fpsyg.2024.1394641

09

[9] Solopova, V., Rostom, E., Cremer, F., Gruszczynski, A., Witte, S., Zhang, C., ... & Landgraf, T. (2023, September). PapagAI: Automated Feedback for Reflective Essays. In German Conference on Artificial Intelligence (Künstliche Intelligenz) (pp. 198-206). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-42608-7_16